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Differential Equations for a Dynamic Thermal 
Conductivity Experiment 1 

J. Spisiak 2'3 and F. Righini 2 

The mathematical model that describes a dynamic thermal conductivity experi- 
ment is reconsidered by taking into account the role of thermal expansion. Two 
differential equations are presented that take into account the various physical 
phenomena occurring in a long thin rod directly heated by a current pulse. One 
of the two equations keeps variables space and time completely separate and is 
particularly useful for computer simulations. 
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1. INTRODUCTION 

A new technique for a dynamic experiment to measure thermal conduc- 
tivity over a wide temperature range is currently in development at the 
Istituto di Metrologia "G. Colonnetti" (IMGC). The experimental 
apparatus and the measurement technique have been described elsewhere 
[1 ]; measurements on niobium are in progress. The experiment consists in 
bringing the specimen to high temperatures with a subsecond current pulse 
and in measuring during the free cooling (lasting 10-20s) the evolving 
temperature profiles via high-speed scanning pyrometry [2]. 

In dynamic thermal conductivity experiments such as the one 
described before, thermal expansion plays an important role, on account of 
both its effects on the different thermophysical properties and its influence 
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on the measurement technique. A microsecond-time resolution scanning 
pyrometer will always measure temperatures in predefined positions in 
"absolute space," but during the experiment it will measure the 
temperature of different points of the sample on account of the specimen's 
thermal expansion. 

The different roles that thermal expansion plays in dynamic conduc- 
tivity experiments have led us to reconsider its effects both on the mathe- 
matical model and on the different approaches that may be used to treat 
experimental data in these experiments. This paper considers two differen- 
tial equations that describe the various physical phenomena taking place in 
a long thin rod directly heated by a current pulse. Both equations of linear 
heat flow take fully into account thermal expansion effects. 

2. FIRST DIFFERENTIAL EQUATION 

We consider a long thin rod rigidly constrained at the origin of the 
coordinate system (Fig. 1). The specimen is fixed at x = O  and thermal 
expansion takes place in the positive x-direction. The rod is heated by the 
electrical current I; at the end of the heating period the current is cut off 
and the specimen cools freely to room temperature. The task is to write the 
differential equation that describes the transient temperature evolution of 
each point of the rod taking into account all different physical phenomena 
taking place, including the thermal expansion of the rod. Of course the 
various thermophysical properties must be considered with their full 
temperature dependence, including that part deriving from thermal expan- 
sion effects I-3]. The only approximation is the assumption of no radial 
temperature gradient in the specimen, leading to what is known as the 
"long thin rod approximation" I-4]. 

The physical phenomena taking place in a dynamic thermal conduc- 
tivity experiment are the same ones occurring in a steady-state experiment, 

~ . . . . . . .  

Fig. 1. Specimen and coordinate axes system. The rod 
is constrained at x = 0 and expands in the positive x 
direction. 
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with the addition of terms related to the heat capacity and to the 
temperature dependence on time. The steady-state mathematical model is 
described in detail by Flynn [5]. A summary of steady-state experiments 
derived from this model is given by Taylor [4, 6]. 

The derivation of the differential equation is based on the power 
balance of the material contained in an infinitely small control volume 
fixed in space (Fig. 2). The term on the right-hand side of Eq. (1) is added 
to the steady-state model to refer to a dynamic experiment. The equation 

Qc + QR + QJ + QT = QA (1) 

contains terms related to thermal conductivity, Qc; radiation losses on the 
surface of the control volume, QR; heat absorbed (or released) in the 
control volume, QA; Joule heat, Q j ;  and the Thomson heat, QT. Taking 
into account the functional dependence on temperature (both of 
thermophysical properties and of geometrical quantities), one obtains from 
Eq. (1) 

~ pI 2 OT ~,~ DT 
Z0x "~S0 - ~ht~ -- rJ)  + T , ' 5 - ; x  = ~ (2) 

The quantities in Eq. (2) are as follows: 2, thermal conductivity; ~ht, 
hemispherical total emittance; p, electrical resistivity; #, Thomson coef- 
ficient; Cp, heat capacity; 6, density; p, perimeter; S, cross-sectional area; ~, 
Stephan-Boltzmann constant; T, temperature; Ta, ambient temperature; 
and t, time. Temperature derivatives with respect to space OT/~x, ~2T/c?xZ, 
and time DT/Dt are also present in Eq. (2). 
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Fig. 2. Control volume used to derive 
the first differential equation. The volume 
is cone-shaped to indicate an exaggerated 
thermal expansion effect. 
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The power balance of the free cooling experiment (current 1= 0) is 
immediately obtained from Eq. (2) as 

O--x~(2S-~x~ -ehtffp(T4-T4a)=6ScpDTDt (3) 

It is important to notice the form of the term QA [right-hand side of Eqs. 
(1)-(3)], which includes the time dependence and represents the main 
difference with respect to the steady-state model, Equations (1), (2), and 
(3) are expressions of the principle of conservation of energy. This principle 
applies to fixed quantities of matter that undergo Changes of conditions. 
Therefore, extension of the steady-state case to a dynamic experiment 
implies that the time changes happening in the control volume must be 
computed by following in time the small amount of material that happened 
to be inside the control volume at the moment in which the equation is 
valid. A similar case is found in the motion of a fluid medium and D( )/Dt 
denotes the "differentiation following the motion" [7]. Consequently the 
use of the "material" derivative [8] D( )/Dt is necessary in dynamic 
thermal conductivity experiments. The concept is illustrated graphically in 
Fig. 3 in three dimensions, where some temperature profiles in a cooling 

Fig. 3. Typical temperature profiles during 
a cooling experiment in a three-dimensional 
representation. The first differential equation is 
valid along line/. 
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experiment are plotted, showing their time evolution. Points A, B, C, and 
D (and all other possible points along line l) indicate the positions assumed 
by the same infinitesimal mass element of the specimen during cooling. 
Equation (3) may be applied by considering that the mass element moves 
due to the contraction of the specimen (cooling experiment). This motion 
must be taken into account, and when writing the differential equations for 
points A, B, C, and D, the derivative DT/Dt must be computed along the 
dashed line /. From Fig. 3 (that is not drawn proportionally to make the 
thermal expansion effect more evident), one notices that the projection of 
line l into the x, t (time) plane (dashed line l') is not perpendicular to the 
x axis. Mathematically this means that x and t are not completely separate 
but are somehow correlated through the thermal expansion of the material. 

3. SECOND DIFFERENTIAL EQUATION 

In certain cases (for example, in computer simulations) it might be 
useful to separate completely variables x and t. If temperature T= T(x, t) 
and the two variables are uncorrelated, by the definition of the "material" 
derivative [-8] 

DT(x, t) ~T ~T 
Dt ~t t- u~ -~x (4) 

where Ux is the speed of the portion of the moving specimen inside the 
control volume. In this case one must consider two processes happening in 
the control volume during an infinitesimal time. The first one is the change 
of heat stored in the control volume without considering that different 
portions of the specimen are inside the control volume at different times, 
and the second one is the change due to mass flow through the control 
volume (convection term). 

Textbooks concerned with the heat conduction in solids rarely treat 
this case, because for most steady-state experiments (and for transient 
experiments related to thermal diffusivity) the properties are determined in 
small temperature ranges and thermal expansion plays a minor role. On 
the other hand, convection plays a major role in fluids and a complete 
derivation of this approach is given in the book by Landau and Lifshitz 
[9]. From the law of conservation of energy they derive a general heat 
transfer equation where the time-dependent term is expressed by 

(0T+ vr) (5) 6Cp \ t?t if" 
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In the dynamic thermal conductivity experiment the moving fluid is 
the expanding specimen and one must consider mass flow of the specimen 
through the control volume during the experiment. Of course, mass flow 
occurs in one direction during heating (expansion) and in the opposite 
direction during cooling (contraction). 

Equation (4) may be substituted.into Eq. (3) to yield 

(6) 

The derivatives appearing in Eq. (6) are computed in the same position in 
"absolute space" (along the dashed line m in Fig. 4) and hence do not refer 
to the same mass element of the specimen (but refer to the portion of 
specimen that happened to be inside the control volume during the experi- 
ment). In other form, the projection of line m into the x, t plane (dashed 
line m' in Fig. 4) is perpendicular to the x axis. This means that all the 
points on line m have the same x coordinate (including points E, F, G, and 
H where line m crosses the temperature profiles). 

t i m e  
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Fig.& Typical temperature profiles during 
a cooling experiment in a three-dimensional 
representation. The second differential equation 
is valid along line m. 
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The last term appearing in Eq. (6), 

8T 
~Scp ux ~x (7) 

represents the power contribution due to mass flow (convectional term). 
Since Ux(X, t) is a quantity difficult to determine experimentally, it would 
be useful to find some conservation law to avoid measurement of this term. 
The useful relation is the mass conservation law, also known as the 
continuity equation [8]: 

8~ 
- -  + v .  ( ~ )  = o (8 )  
8t 

where ~7 is the vector of mass motion. This three-dimensional form of the 
continuity equation can be applied to the "long thin rod approximation" 
by defining a one-dimensional density, 

w=c~S (9) 

where w is the mass per unit length of the specimen. By analogy with 
Eq. (8), the one-dimensional continuity equation is 

8w + 8(wux) = 0 (10) 
8t Ox 

Equation (10) may be integrated taking into account that, by definition, 
the rod is constrained at the origin of the coordinate system ( u x = 0  at 
x = 0). Consequently 

fl dw ST 
WUx=- ~7;ax (11) 

where the quantity dw/dT can be easily computed since it depends only on 
thermal expansion effects. Substituting Eq. (l 1) into Eq. (6), one obtains 
the final differential equation for the cooling experiment, 

a-~ ~s  - ~ht~p(T 4 - T.") = wcp a--~- % ~ Y ~ - ~  dx (12) 

where the variables x and t are completely separated. 
The dynamic thermal conductivity experiment [ 1 ] is inherently more 

accurate for measurements during cooling and Eq. (12) was derived for this 
case. The derivation involved only the term on the right-hand side of 
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Eq. (2), so the same reasoning may be applied to a dynamic heating experi- 
ment, leading to 

a ( ~ x ~  T4 - p I  2 aT ~x 2S - ~htaP( T4a) + - ~ - -  # I ~ x  

aT  aT e~ dw aT 
- j ,  - - - - d x  (13) = WCp - - ~ -  Cp ax o dT  at 

4. CONCLUSIONS 

The thermal model applicable to dynamic thermal conductivity 
experiments has been reconsidered, leading to two one-dimensional partial 
differential equations. In both cases the "long thin rod approximation" is 
assumed and the derivation of the heat equation is based on the power 
balance of an infinitesimal mass of material contained in a control volume 
fixed in space. The main difference between the equations is that, in the first 
case, the temperature derivative with time is computed by following the 
mass element (material derivative). In the second case the partial time 
derivative is used, but one must consider mass flow through the control 
volume during the experiment. Both equations may be used to determine 
thermal conductivity from experimental temperature profiles, but the 
second equation might be particularly useful for computer simulations on 
account of the complete separation between variables space and time. 

The work in this area is continuing with a complete computer simula- 
tion of the dynamic thermal conductivity experiment and with the search 
for different approaches in the treatment of experimental data. 
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